In This Section

Genetic Study Offers Clues About Rare Liver Disease Biliary Atresia

Published on April 25, 2013 in Cornerstone Blog · Last updated 2 weeks 6 days ago
AddtoAny
Share:

WATCH THIS PAGE

Subscribe to be notified of changes or updates to this page.

4 + 0 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.

A new genetic study may shed light on the causes of the rare childhood disease biliary atresia. The leading cause of liver transplantation in children, biliary atresia (BA) is a rare, life-threatening condition in which the ducts that carry bile from the liver to the gallbladder become blocked.

Children’s Hospital’s Randy Matthews, MD, PhD, led this new collaborative genetic study of BA, a condition occurring exclusively in neonatal livers. A relatively rare disease, BA affects approximately one out of every 15,000 infants, and is more common in Asians and African Americans. If left untreated, BA can lead to liver damage and cirrhosis of the liver, and patients with BA often require liver transplants.

The study’s publication, in the May 2013 issue of Gastroenterology, coincides with Children’s Hospital’s 9th annual Biliary Atresia Education Day. Scheduled this year for Sunday, April 28, from 1 to 5 pm in CHOP’s Abramson Research Center, BA education day is free for healthcare professionals and families of children with BA, and “features speakers on a variety of topics related to biliary atresia treatment and research, as well as tips to improve day-to-day living with the disease.”

With this study, Dr. Matthews and other CHOP researchers, including Nancy B. Spinner, PhD, hoped to better understand BA’s etiology, which, while still poorly understood, is “believed to involve exposure of a genetically susceptible individual to certain environmental factors.” Both Drs. Matthews and Spinner are members of Children’s Hospital’s Fred and Suzanne Biesecker Pediatric Liver Center.

“Despite recent inroads into the understanding the mechanisms leading to fibroinflammatory damage to the biliary tree, uncovering the cause of BA continues to be a major challenge,” Dr. Matthews noted. Because BA is so rare, and because there have been few documented cases showing clear familial inheritance, studies into the condition’s possible genetic causes have been difficult, Dr. Matthews said.

After searching for copy number variations (CNVs) — losses or gains in DNA sequence — in patients with BA compared to healthy individuals, Dr. Spinner and her team identified a candidate gene, GPC1. Moving to an animal model, Dr. Matthews and his team then studied reducing the expression of gpc1 in zebrafish, a type of tropical freshwater fish commonly used in scientific and medical studies.

The researchers showed that disruption of gpc1 (as the gene is known in zebrafish) led to biliary defects in zebrafish. This finding, combined with the fact that the investigators also found “GPC1 abnormalities in all BA patient liver samples examined,” support “a potential role for GPC1 as a susceptibility gene for BA,” Dr. Matthews said.

This study builds on previous work by Dr. Spinner’s lab, which associated a region of chromosome 2 with BA. Studies of other possible BA-associated genes are currently underway in the Spinner lab, and Dr. Matthews noted that any future investigations into BA’s causes — and possible treatments — would make use of that work.

While “the ability to test infants for genetic susceptibility to BA is clearly far off,” future studies that shed light on biliary atresia’s pathogenesis could help “identify treatments that are more effective than the existing therapy,” Dr. Matthews said. That said, once tests for BA genetic susceptibility are developed, they will likely include testing for GPC1 defects, he added.

To learn more about Children’s Hospital’s liver disease services and research, see the Fred and Suzanne Biesecker Pediatric Liver Center. For more information about Biliary Atresia Education day see the Hospital’s website, or email Jessi Erlichman, MPH, coordinator of the Liver Center.