3800 Spruce Street

hey there.

Research Interests
Hematopoietic stem cells and leukemia using mouse models

Key Words
Hematopoietic stem cells, leukemia, core binding factors, transcription, small molecule inhibitors

Research Description
Genes required for blood cell formation and function are often mutated in human leukemia. Excellent examples of this are genes that encode the core binding factors (CBFs), which are heterodimeric transcription factors consisting of a DNA-binding Runx subunit and a non-DNA-binding CBFß subunit. Our goals are to delineate CBF?s roles during normal embryonic and adult hematopoiesis. This is important for several reasons: 1) Understanding how hematopoiesis occurs in the embryo is essential if we want to ultimately produce blood from embryonic stem cells for stem cell therapy. 2) Characterizing CBF function in adult blood cells is a prerequisite for understanding how mutations in the CBF genes contribute to leukemia.

Inactivating germline mutations in genes encoding either Runx1 (Runx1) or CBF? (Cbfb) completely eliminate hematopoiesis in the embryo. One important conclusion from these studies was that both the DNA-binding and non-DNA-binding subunits of this CBF complex are essential for its in vivo function. We determined that Runx1 is expressed in a small population of endothelial cells early in mouse development, and appears to be required for the differentiation of hematopoietic stem cells (HSCs) from this ?hemogenic? endothelium. Our more recent studies indicate that Runx1 is required in the endothelium per se for HSCs to form. Current research efforts are to define the precise time during embryogenesis at which Runx1 and Cbfb are required for HSC specification and commitment. We also aim to identify the signaling pathways and centers that activate Runx1 expression and hence the hematopoietic program in the embryo.

We are also delineating the role of Runx1 and Cbfb during later stages of hematopoiesis by utilizing conditional and hypomorphic alleles. Using a hypomorphic Cbfb allele, we recently identified a requirement for CBFs at the earliest states of T and natural killer cell development, and are in the process of placing the CBFs in the genetic hierarchy that controls the differentiation of these two lineages. We are also studying the effect of Runx1 deletion in adult HSCs in order to better understand how acquired Runx1 deficiency contributes to leukemogenesis.

RUNX1 (AML1) is disrupted in de novo acute myeloid and lymphocytic leukemias (AML and ALL) and in therapy-related myelodysplasias and leukemias by many chromosomal translocations, the most frequent of which are the t(8;21) and t(12:21) in de novo AML (M2 subtype) and ALL, respectively. Biallelic inactivating mutations in RUNX1 have been found in 20% of AML of the M0 subtype. The CBFB gene is disrupted in AML (M4) by inv(16). Another research goal has been to characterize the biophysical properties of the oncogenic Runx1 and CBF? fusion proteins found in leukemia, which we have done in the context of a long-standing collaboration with a structural biologist, John Bushweller, at the University of Virginia. Together we have also launched a translational effort to develop small molecule inhibitors of these proteins. We are currently determining which protein-protein interactions mediated by the AML1-ETO protein [which is formed as a result of the t(8;21)] are necessary for its leukemogenic properties, and are developing small molecules to inhibit these interactions.

Lab personnel
Xiongwei Cai, Postdoctoral Fellow
Sankhamala (Mala) Chakraborti, Graduate Student
Michael J. Chen, Postdoctoral Fellow
Justin Gaudet, Graduate Student (at Dartmouth Medical School)
Chung-Tsai Lee, Research Specialist D
Zaw Oo, Graduate Student
Liya Roudaia, MD/PhD Student (at Dartmouth Medical School)
Eileen C. Piwarzyk, Postdoctoral Fellow
Joanna Tober, Postdoctoral Fellow

Selected Publications
Dzierzak, E.D. and N.A. Speck. Of lineage and legacy ? the development of mammalian hematopoietic stem cells. Nat Immunol. 9: 129-136, 2008

North, T., T.-L. Gu, T. Stacy, Q. Wang, L. Howard, M. Binder, M. Marín-Padilla, and N.A. Speck. Cbfa2 is required for the formation of intraaortic hematopoietic clusters. Development 126, 2563-2775, 1999

North, T.E., M.F.T.R. de Bruijn, T. Stacy, L. Talebian, E. Lind, C. Robin, M. Binder, E. Dzierzak, and N.A. Speck. Runx1 expression marks long-term repopulating hematopoietic stem cells in the midgestation mouse embryo. Immunity, 16, 661-672, 2002

Chen, M., T. Yokomizo, B. Zeigler, N.A. Speck. Runx1 is required for the endothelial to hematopoietic stem cell transition but not thereafter. Submitted, 2008

Guo, Y., I. Maillard, S. Chakraborti, E.V. Rothenberg, and N.A. Speck. Core binding factors cooperate with Notch signaling during early T lineage development and are essential at the earliest stages of NK cell development. Blood 112, 480-489, 2008

Liu, Y., M. D. Cheney, J.J. Gaudet, M. Chruszcz, S.M. Lukasik, D. Sugiyama, J. Lary, J. Cole, Z. Dauter, W. Minor, N.A. Speck*, J.H. Bushweller*. The tetramer structure of the Nervy homology two domain, NHR2, is critical for AML1/ETO?s activity. Cancer Cell, 9, 249-260, 2006 (*corresponding authors)

Liu, Y., W. Chen, J. Gaudet, M.D. Cheney, L. Roudaia, T. Cierpicki, R.C. Klet, K. Hartman, T.M. Laue, N.A. Speck*, and J.H. Bushweller*. Structural basis for recognition of SMRT/N-CoR by the MYND domain and its contribution to AML1/ETO?s activity. Cancer Cell 11, 483-497, 2007 (*corresponding authors).

Gorczynski, M.J., Y. Grembecka, Y. Zhou, Y. Kong, L. Roudaia, M.G. Douvas, M.Newman, G. Baber, IZ. Bielnicka, T. Corpora, J. Shi, M. Sridharan, R. Lilien, B.R. Donald, N.A. Speck, M.L. Brown, J.H. Bushweller. Development of an allosteric inhibitor of the protein-protein interaction between the leukemia-associated proteins RUNX1 and CBF????Chem Biol. 14, 1186-1197, 2007

B.S.S, Human Development & Nutritional Sciences, Cornell University (2012)
MSE, Technology Management, University of Pennsylvania (2009)
PhD, Navel Gazing, Some hippy shack (2005)
MBA, TCOB, BTO U (1998)
MBBCH, SOMIS award, University of PA (1998)
Selected Publications
Adams B, Gaulton GN. Gedunken Experiments: Hypotheses and their Outcomes!. MMPI. Vol 123(122932) . 2090 Jun-ly.
Gaulton GN, Adams B, Driscoll D. Experiments and Outcomes. Nature. Vol 5(7) . 2008:321-329.
Adams, BT. Gene deletion in carcinoma. Int J Surg Pathol.. Vol 15. 2007:110-5.
Wehrli F W, Shimakawa A, MacFall J R, Axel L, Perman W. MR imaging of venous and arterial flow by a selective saturation-recovery spin echo (SSRSE) method.. Journal of computer assisted tomography. Vol 9(3) . 537-45.